
AD-Al04 511 BEDFORD RESEARCH ASSOCIATES MA F/B 12/1
STATISTICAL GOODNESS-OF-FIT TECHNIQUES APPLICABLE TO SCINTILLAT--ETC(Ul
JUN 80 P TSIPOURAS, R D'AGOSTINO F19628-79-C 0163

UNCLASSIFIED SCIENTIFIC-1 AFGL-TR-80-0345 NL

Ioo o flNONEffllff
EhE~hEE. 8



LEVIY c$L

AFGL-TR-80-0345

STATISTICAL GOODNESS-OF-FIT TECHNIQUES
APPLICABLE TO SCINTILLATION DATA

P. Tsipouras
R. D'Agostino

Bedford Research Associates
2 DeAngelo Drive A
Bedford, Massachusetts 01731

s Scientific Report No. 1

30 Juns 1930

Approved for public release; distribution unlimited

AIR FORCE GEOPHYSICS LABORATORY
* AIR FORCE SYSTEMS COMMAND
(I. UNITED STATES AIR FORCE

HANSCOM AFB, MASSACHUSETTS 01731

Ica



Qualified requestors may obtain additional copies from the
Defense Technical Information Center. All others should
apply to the National Technical Information Service.



SECURITY CLASSIFICATION OF THIS PAGE ( NWhen D oe Entered)
I i REPORT DOCUMENTATION PAGE READ CSTRUCTIONS

' . BEFORE COMPLETING FORM

.. REPRT .F . 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

rj AFGI.TR-80-0345 ,-9a~5/ ____________

4. T I TLE (and S~btil t) -S. TYP~ ~PrTPRO CQVJf

Statistical Goodness-of-fit Techniques Applicable ;f, ScientificE*'-"1l
-" to Sciutillation Data, .... "-..

t) 
6 PERFORMING ORG. REPORT NjMBER

7. AUTHOR( . S. CONTRACT OR GRANT NUMBER(S)

P./Tsipouras* f F19628-79-C-4163
R./D'Agostino

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA 8 WORK UNIT NUMBERS
Bedford Research Associates 62101F
2 DeAngelo Drive 9993 XX.
Bedford, MA. 01730 __;

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT DAT . .

Air Force Geophysics Laboratories /1, 30 JunAW8 9 "j
Hanscom AFB, Massachusetts 01731 ' NUMe WXr / .,
Monitor/Paul Tsipouras/SUWA 20

14 MO41TORING AGENCY NAME 5 ADDRES&.tf different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

IS. DECLASSIFICATION OOWNGRA !N
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if diflerent from Report)

IS. SUPPLEMENTARY NOTES

* Air Force Geophysics Laboratories

Hanscom AFB, MA. 01731

19 KEY WORDS (Contlnue on revers* side If necessary and Identify by block number)

Nakagami-m, Goodness-of-Fit tests, probability distributions.

k/
20. V TRACT (Continue on reveres eide If neceesery and Identify by block number)

The Nakagami-m distribution is often suggested as the probability
distribution appropriate for scintillation data. This report considers
the statistical questions related to judging the goodness-of-fit of data
to the Nakagami-m distribution. Both graphical and numerical techniques
are discussed.

DD o " pm 1473 
/ j:

DD ,JAN UNCLASSIFIED , // ' ./,

SECURITY CLASSIFICATION OF THIS WAGE (Whe, [)ete Entered)



SECURITY CLASSIFICATION OF THIS PAGE(Whon Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Dam Enteted)



1. Introduction

Satellite communication links at UHF can be subject to the effects of

ionospheric scintillations. These scintillations cause both enhancements and

fading about the median level as the radio signal transmits the disturbed

ionospheric region. When scintillations occur which exceed the fade margin,

performance of the communications link will be degraded. Of major importance

is the estimation of the occurrences of these scintillations that result in

degradation of the communications link. One approach to this estimation

problem consists of determining the probability distribution of scintillations

and then using the properties and parameters of this distribution to obtain

the desired estimates related to fading. The Nakagami-m distribution

(Nakagami, 1960) has been shown to be a useful distribution for describing

the effects of scintillations (Whitney, Aarons, Allen and Seeman, 1972).

This paper discusses the statistical procedures that are applicable in

attempting to judge the goodness-of-fit, or appropriateness of the Nakagami-m

distribution to a data set. That is, it discusses procedures for determining

if a given data set can be considered a sample of data generated from a

Nakagami-m distribution.

While the underlying problem which this paper addresses did arise

from an investigation of scintillation data, the statistical techniques are

not specific to this problem. The techniques are applicable to any data set

arising as either independent observations or as a stationary time series

which might be from a Nakagami-m distribution.
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2. Mathematical Properties of the Nakagami-m Distribution

The probability density for the Nakagami-m distribution is normally

given as an amplitude or power probability density function

m rn-i irs

fs(s) =F (m) m s exp C- - ) (2.1)

where

s = signal power (watts),

0 = average power,

1/2 1 m Es

and

r(m) = gamma function of m.

For modelling scintillation data m-1 in (2.1) is referred to as Rayleigh

fading. In such a situation the probability density is

fs) = 5exp (- s) (2.2)

This distribution (2.2) is usually called the exponential or negative

exponential distribution. (2.2) is related to the classical Rayleigh distri-

bution when we consider the transformation of variables

2R = S (2.3)

where R is intensity. The probability density of R is then

2

fR(r) = -i- exp (- r (2.4)

which is the classical Rayleigh distribution. Also for scintillation data

m 1 refers to fading more severe then Rayleigh fading.

5 I E PAU LAW-M M 2I



The nth moment of the random variable S of (2.1) about the origin is

p mn mmn-di))] (2.5)
ES S = o n fs ) as [ M (nm) (2.5)

o ( (n+m)

FVr scintillation data an important parameter is the coefficient of variation

or, in scintillation jargon, the S4 index. Here

2 _ 2 1/2$4 (ES - (ES) )I  _ a (2.6)
4 ES 4 /(M

In (2.6) we use i and a to represent, respectively, the mean and standard

deviation. m is the parameter of the Nakagami-m distribution given in (2.1).

3. Relation to the Gamma Distribution

The Nakagami-m distribution as given in (2.1) is related to the more

standard gamma distribution whose density is given by

a-Isk S

fs(S) = F( exp (--) (3.1)

Notice if we set in (3.1)

a= m and X = Q/m (3.2)

the gamma density of (3.1) is equal to the Nakagami-m density of (2.1).

This relationship is important for it allows us to use the extensive theory

developed for the gamma distribution to solve problems dealing with the

Nakagami-m distribution.
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4.1 Graphical Analysis

4.1 Ecdf and Kolmogorov-Smirnov Test

Say X1 ,... ,Xn represent a sample of size n. Further, say we wish to evaluate

whether this sample came from a Nakagami-m distribution. To begin the analy-

sis one should first compute the empirical cumulative distribution function

(ecdf) defined for arbitrary x as

#(Xi -x)
F (x) = n (4.1)

Figure la contain an ecdf plot of 10 random observations drawn from a nega-

tive exponential distribution with mean 5 (i.e., Rayleigh fading, m=l and

Q= 5 in (2.1)). The 10 observations are: 8.15, 4.69, 2.17, 0.37, 16.69,

0.06, 6.48, 2.63, 0.44, 0.89. The sample arranged in order of magnitude and

with the corresponding ecdf values are:

Ecdf
Ordered Observation Ordered i

Number i) Observation n n

1 0.06 .10

2 0.37 .20

3 0.44 .30

4 0.89 .40

5 2.17 .50

6 2.63 .60

7 4.69 .70

8 6.48 .80

9 8.15 .90

10 16.69 1.00

The next step is to plot the cumulative distribution function (cdf) for the

hypothesized distribution on the same graph with the sample ecdf and then

judge if the ecdf differs significantly from the hypothesized cdf. For a

continuous random variable X with probability density F(x) the cdf is defined

as 7

A*



'V

* -

-iS -*~

.'Sii ~~\\\
,- i-.- '

- I

94~

It' ~

~ >\ \\ \\

'-I.-

S. L\ \~.* I ~
3 1~

LI.! -

,V ~

s-ti

R '~-

S £

a- N

I.I; -4

ha ~ *

~-

'.4-

LN. I. -~

4-

'1 '1

4.. 0~~ - v- - -o
C.- a. r- - *d, -r i - -

3

8



x

F(x) = J f y) dy (4.2)
-00

Say for the present example the hypothesized distribution is the exponential

given in (2.2). The cdf for this distribution is

F(x) = 1 - ex/Q for x> 0

and (4.3)

F(x) = 0 for X<O

Recall this distribution represents Rayleigh fading (i.e, m=1 in (2.1)).

Two situations present themselves here. First, the values of all the parame-

ters of the hypothesized distribution are known. For our example the only

parameter is Q. Figure lb contains, in addition to the ecdf of the observa-

tions, the cdf of (4.3) with 0=5. The second situation is when the values of

some of the parameters are not known. Figure Ic contains, in addition to the

ecdf of the ten observations, the cdf of (4.3) where 0 is replaced by an
A

estimate, Q, of it which is the sample mean X = 4.26. In general the unknown

parameters should be replaced with efficient estimates - e.g., minimum vari-

ance estimators or maximum likelihood estimators. However, estimators ob-

tained by the method of moments are also often used for "quick computations".

For our example the moment estimator is also the minimum variance and maximum

likelihood estimator.

To judge the significance of the difference between the cdf and the ecdf the

investigator has two possibilities. The first is simply to judge informally

if the difference is too large. For example, the investigator can compute

F (x) - F (x) (4.4)n

for a variety of x's and make a judgement concerning their magnitudes. Tn

this situation the investigator is usually asking the question "Are the

differences in (4.4) of any practical significance? The second procedure

9



consists of using a formal statistics test of significance - viz., the

Kolmogorov-Smirnov test (see Dixon and Massey, 1969, p. 345). This test con-

sists of computing

D = sup IFn (x) - F (x) (4.5)
X

and rejecting the hypothesized distribution as the true distribution if D of

(4.5) exceeds a critical value, say d The value d is selected to produce

a test of level of significance equal to a- i.e., it is selected so that

there is an a chance of Dda if the hypoth4sized distribution is the true

distribution. Alternatively this test consists of adding d to all values of0

F (x). The results of such a computation are shown in Figure ld. (Note inn

Figure Id F (x) + d is forced to lie between 0 and 1. Also for this figure
II 0

d = .41 for n = 10 and a= .05). If any of the cdf is outside the band, the

hypothesized distribution is rejected as the true distribution at the a level

of significance.

This last version of the Kolmogorov-Smirnov test can also be used to

produce a confidence interval or region for the underlying distributions cdf.

Any cdf lying completely in the band F (x) + d is an acceptable cdf at then a

100 (i-q) percent level of confidence. For example, the shaded area in figure

Id consists of the 95 percent confidence region for the 10 random observations

given above.

The values d of the Kolmogorov-Smirnov test depend upon the de-0

sired level of significance (or desired confidence level) and the sample size.

One table of d values s given in Dixon and Massey (1969). When the sample

size of n independent observations exceeds 30 the following values of da may

be used:

Significance Level Confidence Level da

.10 .90 1.22/ n

.05 .95 1.36/ n

.01 .99 1.63/vn

10



4.2 Special Considerations for Application nf- Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test as described above is applicable to situations

where we have samples consisting of independent observations and all the

parameters of the hypothesized distribution are given explicitly. If the

observations are not independent, as will happen when we have a time series,

then we have two possible procedures. First, the test can be applied tc only

a subset of the observations. One way of obtaining this subset is to compute

the autocorrelation function, find the period or lag that corresponds to a

zero autocorrelation (say it is period k) and use every kth observation in the

Kiomogorov-Smirnov test. Alternatively, the ecdf of (4.1) can be computed

using all the observations, but the values of d should be multiplied by /k.

This will effectively reduce the sample to n/k independent or uncorrelated

observations without the loss of any information obtainable from the full set

of n available observations.

If any of the parameters are not known then they must first be estimated before

the Kolmogorov-Smirnov test can be applied. For the Nakagami-m distribution

of (2.1) the two parameters that need to be estimated are

O and m

These can be estimated by the method of maximum likelihood or, if the sample

is large, there should be little loss in efficiency if the parameters are

estimated by the method of moments. The moment estimates are:
A -

x 
(4.6)

and
-2

A X
m 2 (4.7)

-- 2
In (4.5) and (4.6) x and s are the sample mean and variances, respectively,

where

Ex 2 E(x-x)
n n-l

I1



When the parameters are estimated and then the Kolmogorov-Smirnov test is

applied, the resulting test is conservative. That is, the true level of

significance is smaller than the nominal or stated level.

4.3 Probability Plotting

If the above procedure leads to rejection of the hypothesis that the

Nakagami-m distribution "fits" the data, the next item in the analysis is to

determine where and how the model deviates from the data. Certain deviations

may not be considered to be of practical significance. For example, it may

not be a serious lack of fit if the data deviates from the model only for the

tail observation (say, less than 2nd percentile or greater than 98 percentile).

However, other deviations may be considered very serious and would render the

Nakagami-m model useless. It is important that the investigator knows the

statistically significant deviations and knows if they are of practical im-

portance.

One useful way of determining where the model deviates from the data is to em-

ploy probability plotting. Probability plotting for the present problem is

the plotting of the ordercd observations from a sample versus the inverse of

the cdf of the Nakagami-m distribution of (2.1). Usually 0 is set equal to

unity in the plotting. Specifically, say x(l) K . . *_X(n) represents the

sample ordered from the smallest to largest. Next, say the Nakagami-m

distribution with Q=l has cdf (G(z) equal to

Z m

G zW 
=  z o m nI- I
1 (m) y exp (-my) dy (4.8)

Further say we redefine the ecdf to be

X(k) i-1/2 (4.9)F(k)) n

The probability plotting is a plot on linear-by-linear paper of

x () on G-I(F (x(i)) (4.10)

12



If the Nakagami-m distribution is the,"true" distribution the plot given by

(4.10) is, within sampling fluctuations, a straight line through the origin

with slope equal to Q. Deviations from a straight line indicate where the

deviation from the model exists.

Notice in order to implement the above m must be known.

One possibility for determining m if it is not known a priori is to use the
A

estimator m given by (4.7). Also note that the inverse of the cdf defined in

(4.8) cannot be given in closed form. However, Wilk, Gnanadesikan and Huyett

(1962) supply tables and an outline for a computer program which can be used

to obtain these inverses.

13



5. Chi-Square Goodness-of-Fit Test

We recommended the Graphical Analysis coupled with the Kolmogorov Smirnov test

described above as the preferred technique for determining the appropriate-

ness of the Nakagami-m distribution to a set of data. However, tiere may be

situations where the Kolmogorov-Smirnov test may not be applicable. For ex-

ample, the researcher may know a priori that the extreme tails of the data

(below 2nd percentile and above 98th percentile) will not be well approximated

by the Nakagami-m distribution. This could be due to accuracy limitations of

the measurement instrument. In such a situation the investigator may want to

censor (i.e., remove) the tails of the data and not enter these into a formal

statistical inference test. The ecdf defined in (4.1), the plot of the ecdf

(such as in figure la), and the probability plotting as described in

section 4.3 are still valid and useful. However, the Kolmogorov-Smirnov test

is not valid on censored data. The chi-square goodness-of-fit test is appro-

priate in this situation as a statistical inference test. We suggest the test

should be performed as follows:

(1) Decide upon appropriate values of m and Q. These may

be known as apriori or estimated from the data. The appro-

priate method for obtaining these is by use of the method

of maximum likelihood on the censored data. However, if the

sample is large the method of moment estimates (see (4.6))

and (4.7)) should be sufficient.

(2) Using the values of m and 0 obtained from (1) find the

values SO ... ...$20 which divide the distribution (2.1)

into 20 equal probability sections. Note S0=O , S is de-

termined such that

.05= f (s) ds
0

14



S2 is determined such that

S2

.10 = S (s) dsI .

0

and S --. This step produces 20 intervals or categories

each with probability .05.

(3) Compute the expected values for each of the 20 categories.

These will all equal n(.05).

(4) Classify each observation into one of the twenty categories.

The frequencies in these 20 categories can be represented by

ft ..... f20 where n = Efi .

(5) Compute the chi square statistic

X2 = E(f- .05n) 2/(.05n) (5.1)

2
(6) Compare the X value of (5.1) with the appropriate critical

chi square value obtained from ithe chi square distribution with

19 degrees of freedom if m and 0 were estimated, or obtained from

the chi square distribution with 17 degrees of freedom if both

m and 0 were estimated.

If the data contains dependent observations (as in a time

series) then the X2 value of (5.1) should be divided by k, i.e.,

X 2  = X2/k
new

where k is the period or lag corresponding to a zero correlation

in the oroginal data (see section 4.2). The X2  value is now
new

compared to the critical chi square values obtained from the chi

square tables.

15
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6. Test for Changing m Values

One problem which the authors have had to address when attempting to evaluate

the appropriateness of the Nakagami-m to time series is the problem of chang-

ing m values. That is, while the Nakagami-m distribution may be an appropriate

model for the data, the actual value of m is not constant over the entire data

set. In some of these situations, the number and locations of the segments

that have different m values may be known. In this section, we present a

large sample test which can be used to test the equality of the Nakagami-m

values for t segments of data.

6.1 Mathematical Statement of the Problem

Say we have t sets of independent observations each from a Nakagami-m

distribution. The m values for the segments are

mI ,  m 2 9 ... , 9m t

The problem is to test for the equality of these m values. That is, we want

to test the hypothesis

H: m = m 2  mt = m. (6.1)

Equivalent to this hypothesis is the hypothesis

HI: S =S - - S4 (6.2)
$41 $42 ... = S4t

where S for i = 1, ..., t is the S4 value defined in (2.6) for the ith

segment. (Recall S4 = l/ /m.). The test we present in the following tests

directly the hypothesis H of (6.2).

16



6.2 Notation- Statistical Results

Say we have ni independent observations from segment i for i=l, ... , t. From

each segment we compute the sample mean, sample standard deviation, and sample

estimate of S4. These are, respectively,

Xi = E (Xij)/n i  (6.3)

S i  

( 6.( 
X 

2

n-I (6.4)

and
S4i A 

(6.5)

S th -Xth

Here Xij represents the j observation for the i sample, J-l, .. ,iHi

1=1, ... , t. For large samples

A 1
ES1 i (6.6)

where E represents the expected value operator. Further for large samples
A

the standard error of S for i=l, ..., t is

4i

EX i(6.8)

17



and

-i )- E(Xi j _ 4 for - 0 (6.9)

A
The sample estimate of the standard errof of S is

41

n n ^ ^1/2

(A) 2  LA AAA1/S4. (_ ' 2 2  + 21 - (6.10)
S 4i - ni  (S41i)1- V

Here 1(Xi. -x[)
. .. for i = 1, ... , t.

ni

A
Further for large samples the S are approximately normally distributed.

See Rao (1973, Chapter 6) for proofs of the above assertions.

If the m1 values are all equal (that is, hypothese H of (6.1) and H1 of

(6.2) are correct, then an estimate of the common value m is

Z (n S ./OYA
A 1 4i/S 4i
S4 =

E(n/0 A2) (6.11)
SS41

6.3 The Test

Given that H: = ... S4t is correct then

F (S 4u - 4
(SA (6.12)

S A2

41

18



I
is approximately distributed as a chi square variable with t-l degrees of

1freedom for large samples. Rejection of H at the a level of significance

follows if the statistic of (6.12) exceeds the upper a value of the chi-

square distribution with t-l degrees of freedom (Rao, 1973, p. 389).

6.4 Further Comments

In addition to the m values varying from segment to segment the Q value of

the Nakagami-m distribution may also vary. This value is the mean of the

distribution so an appropriate test to test the hypothesis

H : = =O~0 1 , t

is the analysis of variance test. Because the mean of the Nakagami-m

distribution is proportional to its standard deviation the analysis of

variance on the logs of the data may be a more appropriate analysis than an

analysis of variance of the original data (Dixon and Massey, 1969, Chapter 16).

As was stated a number of times above, the test for equality of the m values

assumes independent observations. If we are dealing with a time series then

the sample sizes should be reduced or other adjustments should be made to
th

reflect this (see section 4.2). One possibility is to use every ki obser-

vation in the ith segment for i-l, ..., t where ki Is the period or lag

corresponding to zero autocorrelation for the ith segment. Then only ni/k.

observations will be used in each segment. Alternatively, all n1 observations

can be used by ni in formulas (6.7) and (6.10) should be replaced by nk/ki.
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